

Practical Game Programming

Copyright 2010 Jari Komppa - http://iki.fi/sol/

 Networking

 Many places at once

Honestly..

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Networking is not my area.
● I've never personally implemented a networked

game.
● Still, I can describe the problem, and some

approaches.

What's the net?

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Two kinds of transports.
● TCP/IP

● Gets your packets there.
● ..eventually.

● UDP
● Possibly faster.
● But doesn't guarantee anything.

derivatives

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● UDP can be used to build your own "TCP/IP"
● Out of order packets, for instance.

● Sometimes you don't need to care about lost
packets!
● If you spam the network with position data, for

instance, losing some of these might not be a
problem.

● Different kinds of network traffic for different
kinds of games.
● Chess vs FPS vs RTS

time

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● What's the time?
● PC timers run at slightly different speeds.
● Audio clocks run at slightly different speeds (i.e. not

exactly 44.1khz for instance)
-> Can't trust computers' clocks to run at the same
speed!

● Need constantly resynchronized "network time"
of some sort.
● Which is kind of like mailing someone a letter

saying "let's synchronize our watches!"

Keeping in sync

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Approach 1: peer-to-peer
● Run the exact same simulation on all nodes.

– Can't trust clock to run at the same speed.
– Can't trust floating point ops to calculate exactly same

values!
● Keep machines in sync frame by frame and send

keypresses around.
– Locked to the lowest FPS (or worse)
– Requires a lot of bandwidth and zero ping

● Only feasible on LAN

Keeping in sync

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Approach 2: client-server
● Server knows the 'truth'.
● Clients run simulation, predicting future state.
● Server updates state to all clients periodically.
● If simulation and "the truth" vary too much, warp

objects.
● For performance reasons, may want to trust client

on some things (such as player's position).
● No player sees the "actual" game situation, but with

low enough ping, "close enough"

Prediction fun

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● In a complex case you may end up having the
following on a client:
● Current simulation state.
● Latest known truth.
● Latest prediction target.

Internet fun

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Apart from variable lag and lost (and out of
order) packets:
● IPv4: today

– Majority of users behind NAT.
– May need a lobby server for NAT punching.

● IPv6: tomorrow
– Can't expect users to type in IPv6 addresses.

● 1234:5678:9012:3456:7890:1234:5678:9012
– Lobby server for matchmaking again.

Who to trust?

Copyright 2010 Jari Komppa - http://iki.fi/sol/

● Cheating rampant in networked games.
● Hey, developing cheats may actually be fun.

● Some ways to fight this:
● Strict client-server split. Server owns the "truth".

– Possible performance issues.
● Server tells clients things on a need-to-know basis.

– Possible performance issues; client may not be able to
do predictive simulation properly.

● Encryption, client binary validation, anti-debugging
techniques, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

